Challenging Applications

Example Drip Studies: Why are they Challenging?

1) Different Equipment (i.e. not a spray boom)
2) Two rate Dilemma
3) Rate of water delivery
4) Rate of ai delivery
5) What is your sprayer?
6) Injector
7) Drip System
8) Both?

Protocol Language:

Two parts: ai and water

Tt\#	Treatment	Target Rate of active ingredient	Target Rate of formulated product*	Application Type	Spray Volume Range**
01	Untreated	Not Applicable	Not Applicable	Not Applicable	Not Applicable
02	$\begin{aligned} & \text { DPX-QGU42 OD } \\ & (100 \mathrm{~g} \mathrm{ai/L}) \end{aligned}$	$\begin{aligned} & 0.5 \text { or a.i. } / \mathrm{A}=0.03125 \mathrm{lb} \\ & \text { a.i./A or } 14.175 \text { grams } \\ & \text { a.i./A } \\ & (35 \text { grams ailhectare) } \end{aligned}$	$\begin{aligned} & 142 \mathrm{ml} / \mathrm{acre} \\ & \text { +NIS or COC } \\ & \text { (} 350 \mathrm{~m} / \mathrm{hectare} \text {) } \end{aligned}$	Foliar spray	$\begin{aligned} & 20 \text { to } 50 \mathrm{GPA} \\ & (76 \text { to } 190 \mathrm{~L} / \mathrm{Ha}) \end{aligned}$
03	$\begin{aligned} & \begin{array}{l} \text { DPX-QGU42 SC } \\ (200 \mathrm{~g} \text { ailL) } \end{array} \\ & \hline \end{aligned}$	$40 z$ ai./A or 0.25 lb a.i./A or 113.4 g a.i./acre (280 grams ai/hectare)	$\begin{array}{\|l\|} \hline 570 \mathrm{ml} / \mathrm{acre} \\ \text { (1400 ml/hectare) } \end{array}$	Soil drench or through drip irrigation	80 ml fungicide solution per plant or as appropriate through the drip iriaation system.

If drip irrigation is used to make the application in $T \mathrm{~T}$ t\#03 then: Apply in 0.5 acre inches of water $(\pm 10 \%)$. Apply irrigation water and test substance as follows: first $1 / 4-1 / 3$ of irrigation water with test substance, 1 nal $2 / 3-3 / 4$ of irrigation water without test substance. The fractions are not exact requirements but rather guidance as to how to apply.

Width $=1$ Chain $=\mathbf{2 2}$ yards
So... $66^{\prime} \times \mathbf{6 6 0}=43,560 \mathrm{sq} \mathrm{ft}$

Water Calculations:

Two parts: 0.5 Acre Inch

Area $=$?
43560 sq. ft.
X . 5 "/12 in/ft
$=1815$ cubic ft
X 7.4805 gallons/cu ft
= 13,577 gallons

Water Calculations (continued):

Irrigation Volume/Plot: 0.5 Acre Inch = 13,577 gallons
Your plot: smaller (say 5×5 'rows $\times \mathbf{5 0}$ ') $\mathbf{= 1 2 5 0} \mathbf{~ s q ~ f t ~}$
Volume to apply: 1250 sq ft $/ 43560$ sq ft/A * 13,577ga $=\mathbf{~ 3 9 0 g a}$
Test Substance in first $\mathbf{1 / 4}$ to $\mathbf{1 / 3}$ of application, or

$$
\begin{aligned}
& .25 * 390 \mathrm{ga}=98 \mathrm{ga} \\
& .33 * 390 \mathrm{ga}=129 \mathrm{ga}
\end{aligned}
$$

Test Substance rate $=570 \mathrm{mls} / \mathrm{A}$
$=570 \mathrm{mls} / \mathrm{A}^{*} 1250$ sqft/plot / 43560 sq ft / A
$=16.4 \mathrm{mls}$

Three Methods: Bulk Tank

Bulk Tank
Relatively Straightforward

1) Calculate ts \& add to calculated 1/4 to 1/3 water volume
2) Apply ts + water mix
3) Apply remaining water

Specific Example:
110 ga + 16.4 mls ts
followed by 280 ga

Somewhat more complicated

Mazzei

1) Measure injector rate
2) Measure system rate
3) Adjust ts mix volume so
injection occurs for $1 / 4$ to $1 / 3$
of total irrigation time
UCD example:
Qmazzei $=4.3 \mathrm{~L} / \mathrm{hr}$
Qsystem = 732 L/hr
Vplot $=4719$ L
Total Time $\quad=4719 \mathrm{~L} / 732 \mathrm{~L} / \mathrm{hr}=6.4 \mathrm{hrs}$
25% Time $\quad=.25$ * $6.4 \mathrm{hrs}=1.6 \mathrm{hrs}$
25% Volume $\quad=4.3 \mathrm{~L} / \mathrm{hr}$ * $1.6 \mathrm{hrs}=6.8 \mathrm{~L}$
ts Mix Volume = 7L

Documentation

$$
\text { App } \lambda^{\prime}, 2 \text { TAt O3 EMITTER DISCHARGE VERIFICATION }
$$

QGU42/Pepper
(Bell \& Non-Hell)
ID No. 10621.11 NM 09

Prior to first application with drip applicator, record timed discharge from approximately equidistant emitters in near(N$)_{\text {e }}$ middles) and far(F) thirds of each drip line. Rows are numbered from left to right when facing plot from main line.

DISCHARGE IN MILLILITERS (ML) AVG $=$ puerdll menage for 24 epiflery per fun

(2) AU discluvphemiter celcwhtel for 23 emitters

Photographs of Injection Manifold

$1 / 4$ " ID vinyl tubing for uptake of test substance solution
$1 / 2$ " Injector
(Model 283, Mazzei Injector Company, LLC, Bakersfield, CA)
$1 / 2^{\prime \prime}$ Utility Ball Valve
3/4" Utility Ball Valve
(Spears Manufacturing Company, Sylmar, CA)

3/4" In-line Spring Check Valve (Dura Plastic Products, Beaumont, CA)

10 PSI Pressure Regulator (Senninger Irrigation Company, Clermont, FL)

Photographs of Injection Manifold

$1 / 4$ " ID vinyl tubing for uptake of test substance solution
$1 / 2$ " Injector
(Model 283, Mazzei Injector Company, LLC, Bakersfield, CA)

Photograph of Mazzei Injection Manifold 'Mazzei Injector'
$1 / 4$ " ID vinyl tubing for uptake of test substance solution
$1 / 2$ " Injector
(Model 283, Mazzei Injector Company, LLC, Bakersfield, CA)

WSU - Wasabi setup with multiple Dosatrons

Dosatron Diagram

Device needs to be sized for your flow rate
http://www.dosatronusa.com/
The rest of the calculations \& calibrations follow the same procedure as the Mazzei

